Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

Ring shaped dust accumulation in transition disks

Pinilla, P. and Benisty, M. and Birnstiel, T.

Keywords

accretion, accretion disks, circumstellar matter, stars: pre-main sequence, planetary systems, planets and satellites: formation, stars: individual: LkCa15

Abstract

Context.Transition disks are believed to be the final stages of protoplanetary disks, during which a forming planetary system or photoevaporation processes open a gap in the inner disk, drastically changing the disk structure. From theoretical arguments it is expected that dust growth, fragmentation and radial drift are strongly influenced by gas disk structure, and pressure bumps in disks have been suggested as key features that may allow grains to converge and grow efficiently. Aims. We want to study how the presence of a large planet in a disk influences the growth and radial distribution of dust grains, and how observable properties are linked to the mass of the planet. Methods. We combine two-dimensional hydrodynamical disk simulations of disk-planet interactions with state-of-the-art coagulation/fragmentation models to simulate the evolution of dust in a disk which has a gap created by a massive planet. We compute images at different wavelengths and illustrate our results using the example of the transition disk LkCa15. Results. The gap opened by a planet and the long-range interaction between the planet and the outer disk create a single large pressure bump outside the planetary orbit. Millimeter-sized particles form and accumulate at the pressure maximum and naturally produce ring-shaped sub-millimeter emission that is long-lived because radial drift no longer depletes the large grain population of the disk. For large planet masses around 9 $M_{mathrm{Jup}}$, the pressure maximum and, therefore, the ring of millimeter particles is located at distances that can be more than twice the star-planet separation, creating a large spatial separation between the gas inner edge of the outer disk and the peak millimeter emission. Smaller grains do get closer to the gap and we predict how the surface brightness varies at different wavelengths.

Information

Published
2012 as article (english)
A_s13amp_s19A, 545 - page(s): A81
Type
theoretical work
Links
pdf
ads
adsabs.harvard.edu/a…
Related to the research area(s):
G
e-Print
1207.6485

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de