Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

Renormalization of the cyclic Wilson loop

Berwein, M. and Brambilla, N. and Ghiglieri, J. and Vairo, A.

Keywords

Wilson loop_s19 renormalization_s19 cusp divergences_s19 intersections_s19 periodic boundary conditions

Abstract

In finite-temperature field theory, the cyclic Wilson loop is defined as a rectangular Wilson loop spanning the whole compactified time direction. In a generic non-abelian gauge theory, we calculate the perturbative expansion of the cyclic Wilson loop up to order g^4. At this order and after charge renormalization, the cyclic Wilson loop is known to be ultraviolet divergent. We show that the divergence is not associated with cusps in the contour but is instead due to the contour intersecting itself because of the periodic boundary conditions. One consequence of this is that the cyclic Wilson loop mixes under renormalization with the correlator of two Polyakov loops. The resulting renormalization equation is tested up to order g^6 and used to resum the leading logarithms associated with the intersection divergence. Implications for lattice studies of this operator, which may be relevant for the phenomenology of quarkonium at finite temperature, are discussed.

Information

Published
2013 as article (english)
JHEP, 1303, 69
Contact
Prof. Dr. Nora Brambilla
Type
theoretical work
Links
pdf
Related to the research area(s):
D
e-Print
1212.4413

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de