Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

Spectral modelling of the _s14super-Chandrasekhar_s14 Type Ia SN 2009dc - testing a 2 M$__s13sun_s19$ white dwarf explosion model and alternatives

Hachinger, S. and Mazzali, P.~A. and Taubenberger, S. and Fink, M. and Pakmor, R. and Hillebrandt, W. and Seitenzahl, I.~R.

Keywords

radiative transfer, techniques: spectroscopic, supernovae: general, supernovae: individual: SN 2009dc

Abstract

Extremely luminous, super-Chandrasekhar (SC) Type Ia Supernovae (SNe Ia) are as yet an unexplained phenomenon. We analyse a well-observed SN of this class, SN 2009dc, by modelling its photospheric spectra with a spectral synthesis code, using the technique of _s14Abundance Tomography_s14. We present spectral models based on different density profiles, corresponding to different explosion scenarios, and discuss their consistency. First, we use a density structure of a simulated explosion of a 2 M_sun rotating C-O white dwarf (WD), which is often proposed as a possibility to explain SC SNe Ia. Then, we test a density profile empirically inferred from the evolution of line velocities (blueshifts). This model may be interpreted as a core-collapse SN with an ejecta mass ~ 3 M_sun. Finally, we calculate spectra assuming an interaction scenario. In such a scenario, SN 2009dc would be a standard WD explosion with a normal intrinsic luminosity, and this luminosity would be augmented by interaction of the ejecta with a H-/He-poor circumstellar medium. We find that no model tested easily explains SN 2009dc. With the 2 M_sun WD model, our abundance analysis predicts small amounts of burning products in the intermediate-/high-velocity ejecta (v > 9000 km/s). However, in the original explosion simulations, where the nuclear energy release per unit mass is large, burned material is present at high v. This contradiction can only be resolved if asymmetries strongly affect the radiative transfer or if C-O WDs with masses significantly above 2 M_sun exist. In a core-collapse scenario, low velocities of Fe-group elements are expected, but the abundance stratification in SN 2009dc seems _s14SN Ia-like_s14. The interaction-based model looks promising, and we have some speculations on possible progenitor configurations. However, radiation-hydro simulations will be needed to judge whether this scenario is realistic at all.

Information

Published
2012 as article
mnras, 427 - page(s): 2057-2078
Contact
Prof. Dr. Wolfgang Hillebrandt
Type
theoretical work
Links
pdf
ads
adsabs.harvard.edu/a…
Related to the research area(s):
G
e-Print
1209.1339

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de