Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

Particle-physics constraints from the globular cluster M5: Neutrino Dipole Moments

Viaux, Nicolás and Catelan, Márcio and Stetson, Peter B. and Raffelt, Georg and Redondo, Javier and others

Keywords

No keywords

Abstract

Stellar evolution is modified if energy is lost in a _s15dark channel_s15 similar to neutrino emission. Comparing modified stellar evolution sequences with observations provides some of the most restrictive limits on axions and other hypothetical low-mass particles and on non-standard neutrino properties. In particular, a putative neutrino magnetic dipole moment mu_nu enhances the plasmon decay process, postpones helium ignition in low-mass stars, and therefore extends the red-giant branch (RGB) in globular clusters (GCs). The brightness of the tip of the RGB (TRGB) remains the most sensitive probe for mu_nu and we revisit this argument from a modern perspective. Based on a large set of archival observations, we provide high-precision photometry for the Galactic GC M5 (NGC5904) and carefully determine its TRGB position. On the theoretical side, we add the extra plasmon decay rate brought about by mu_nu to the Princeton-Goddard-PUC stellar evolution code. Different sources of uncertainty are critically examined. The main source of systematic uncertainty is the bolometric correction and the main statistical uncertainty derives from the distance modulus based on main-sequence fitting. (Other measures of distance, e.g., the brightness of RR Lyrae stars, are influenced by the energy loss that we wish to constrain.) The statistical uncertainty of the TRGB position relative to the brightest RGB star is less important because the RGB is well populated. We infer an absolute I-band brightness of M_I=-4.17_s16/-0.13 mag for the TRGB compared with the theoretical prediction of -3.99_s16/-0.07 mag, in reasonable agreement with each other. A significant brightness increase caused by neutrino dipole moments is constrained such that mu_nu

Information

Published
2013 as article
Type
theoretical work
Links
pdf
Related to the research area(s):
D
e-Print
1308.4627

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de