Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

Galactic winds - how to launch galactic outflows in typical Lyman-break galaxies

von Glasow, W. and Krause, M.~G.~H. and Sommer-Larsen, J. and Burkert, A.

Keywords

methods: numerical, ISM: bubbles, galaxies: evolution, galaxies: haloes, galaxies: high-redshift, galaxies: ISM

Abstract

We perform hydrodynamical simulations of a young galactic disc embedded in a hot gaseous halo using parameters typical for Lyman-break galaxies (LBGs). We take into account the (static) gravitational potentials due to a dark matter halo, a stellar bulge and a disc of stars and gas. Star formation is treated by a local Kennicutt-Schmidt law. We simplify the structure of the interstellar medium (ISM) by restricting the computational domain to a 25th of the full azimuthal angle, effectively assuming large-scale axisymmetry and neglecting any effects of spiral structure and focus on the large-scale ISM drivers, the superbubbles. Supernovae are triggered randomly and have preset event sizes of several tens to hundreds. We further investigate different halo gas pressures and energy injection methods. Many of our simulated galaxies, but not all, develop bipolar outflows. We characterize the strength of the outflow by mass and energy outflow rates, and investigate the effect of changes to the details of the model. We find that supernovae are more effective if comprised into larger superbubbles. The weight and the pressure of the halo gas is able to quench galactic outflows. The wind emerges from a series of superbubbles in regions where a critical star formation density is exceeded. The superbubbles expand into the gaseous halo at slightly supersonic speed, producing radiative shock waves with similar characteristics as the absorption systems observed around LBGs.

Information

Published
2013 as article (english)
mnras, 434 - page(s): 1151-1170
Type
theoretical work
Links
pdf
ads
adsabs.harvard.edu/a…
Related to the research area(s):
G
e-Print
1306.3136

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de