Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis

Wallner, A., Faestermann, T., Feige, J., Feldstein, C., Knie, K., Korschinek, G., Kutschera, W., Ofan, A., Paul, M., Quinto, F. , Rugel, G., Steier, P

Keywords

No keywords

Abstract

Half of the heavy elements including all actinides are produced in r-process nucleosynthesis, whose sites and history remain a mystery. If continuously produced, the Interstellar Medium is expected to build-up a quasi-steady state of abundances of short-lived nuclides (with half-lives .lt. 100 My), including actinides produced in r-process nucleosynthesis. Their existence in today_s14s interstellar medium would serve as a radioactive clock and would establish that their production was recent. In particular 244Pu, a radioactive actinide nuclide (half-life=81 My), can place strong constraints on recent r-process frequency and production yield. Here we report the detection of live interstellar 244Pu, archived in Earths deep-sea floor during the last 25 My, at abundances lower than expected from continuous production in the Galaxy by about 2 orders of magnitude. This large discrepancy may signal a rarity of actinide r-process nucleosynthesis sites, compatible with neutron-star mergers or with a small subset of actinide-producing supernovae.

Information

Published
2015 as article (english)
Nature Communications, 6, 5956
Contact
Dr. Thomas Faestermann
Type
experimental work
Links
pdf
Related to the research area(s):
G

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de