Diese Webseite wird nicht länger aktualisiert. Für Inhalte und Links wird keine Haftung übernommen. Bitte besuchen Sie die Seite des Nachfolgeclusters ORIGINS.
This website is no longer maintained. We assume no liability for content and links. Please visit the webpage of the successive cluster ORIGINS.

A Two-parameter Criterion for Classifying the Explodability of Massive Stars by the Neutrino-driven Mechanism

Ertl, T. and Janka, H.-T. and Woosley, S.~E. and Sukhbold, T. and Ugliano, M.

Keywords

hydrodynamics, neutrinos, stars: massive, supernovae: general

Abstract

Thus far, judging the fate of a massive star (either a neutron star [NS] or a black hole) solely by its structure prior to core collapse has been ambiguous. Our work and previous attempts find a nonmonotonic variation of successful and failed supernovae with zero-age main-sequence mass, for which no single structural parameter can serve as a good predictive measure. However, we identify two parameters computed from the pre-collapse structure of the progenitor, which in combination allow for a clear separation of exploding and nonexploding cases with only a few exceptions (Ëœ1%-2.5%) in our set of 621 investigated stellar models. One parameter is M4, defining the normalized enclosed mass for a dimensionless entropy per nucleon of s = 4, and the other is {μ }4equiv ({dm}/{M}⊙ )/({dr}/1000 {km}){| }s=4, being the normalized mass derivative at this location. The two parameters μ4 and M4μ4 can be directly linked to the mass-infall rate, dot{M}, of the collapsing star and the electron-type neutrino luminosity of the accreting proto-NS, {L}{ν e}propto {M}{ns}dot{M}, which play a crucial role in the â_s08œcritical luminosityâ_s08 concept for the theoretical description of neutrino-driven explosions as runaway phenomena of the stalled accretion shock. All models were evolved employing the approach of Ugliano et al. for simulating neutrino-driven explosions in spherical symmetry. The neutrino emission of the accretion layer is approximated by a gray transport solver, while the uncertain neutrino emission of the 1.1 M⊙ proto-NS core is parameterized by an analytic model. The free parameters connected to the core-boundary prescription are calibrated to reproduce the observables of SN 1987A for five different progenitor models.

Information

Published
2016 as article (english)
pj, 818 - page(s): 124
Contact
PD Dr. Hans-Thomas Janka
Type
theoretical work
Links
pdf
ads
adsabs.harvard.edu/a…
Related to the research area(s):
G
e-Print
1503.07522

Technische Universitaet Muenchen
Exzellenzcluster Universe

Boltzmannstr. 2
D-85748 Garching

Tel. + 49 89 35831 - 7100
Fax + 49 89 3299 - 4002
info@universe-cluster.de